Comment on `Motion of a soliton pair in an inhomogeneous hydrogen-bonded chain'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys.: Condens. Matter 84855
(http://iopscience.iop.org/0953-8984/8/26/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.206
The article was downloaded on $13 / 05 / 2010$ at $18: 16$

Please note that terms and conditions apply.

COMMENT

Comment on 'Motion of a soliton pair in an inhomogeneous hydrogen-bonded chain'

A Gordon
Department of Mathematics and Physics, University of Haifa at Oranim, 36006 Tivon, Israel

Received 13 March 1996

Abstract

I point out that the recent paper 'Motion of a soliton pair in an inhomogeneous hydrogen-bonded chain' (J-Z Xu 1995 J. Phys.: Condens. Matter 5 269) is based on my bellshape soliton model previously published.

Protonic dynamics in hydrogen-bonded solids have attracted considerable interest in recent years due to the taking into account of the real asymmetry of double well-potentials for a proton in hydrogen-bonded chains [1-6]. For example, in [1] the asymmetric double-well potential

$$
\begin{equation*}
V=\frac{1}{2} A u^{2}-\frac{1}{3} B u^{3}+\frac{1}{4} C u^{4} \tag{1}
\end{equation*}
$$

where $u=u(x, t)$ is the displacement of a proton from one of the minima of the doublewell potential (1), has been used for the motion of a soliton pair. Equation (1) has also been used in [4] to calculate the thermodynamic properties of a system of asymmetric double-well anharmonic oscillators and in [6] for calculations of conductivity in proton superconductors. One of the central points of the model (1) [1] is an existence of the exact soliton solution (bell-shaped soliton) for the equation of motion for the potential (1)

$$
\begin{equation*}
u=(3 A / B) /\left(1+\left(1-\left(9 A C / 2 B^{2}\right)^{1 / 2}\right) \cosh (s / \Delta)\right) \tag{2}
\end{equation*}
$$

where Δ is the width of the soliton, $s=x-v t$ and v is the soliton velocity in the direction x. For $9 A C=B^{2}$ we have the symmetric double-minimum potential and the kink solution

$$
\begin{equation*}
u=(3 A / B) /\left(1+\exp \left(-\frac{s}{\Delta}\right)\right) \tag{3}
\end{equation*}
$$

The model (1) for hydrogen-bonded systems had been proposed in [7, 8]. Equations (2) and (3) had also been obtained in $[7,8]$. The kink energy and its effective mass, presented in [1], had been calculated in [8].

References

[1] Xu J-Z 1995 J. Phys.: Condens. Matter 5269
[2] Xu J-Z and Huang J-N 1995 Phys. Lett. A 197127
[3] Xu J-Z and Zhou B 1996 Phys. Lett. A 210307
[4] Feranchuk I D, Ulyanenkov A P and Kuz'min V S 1991 Chem. Phys. 15761
[5] Gordon A 1995 Z. Phys. B 96517
[6] Gordon A 1995 Phys. Rev. B 52 R6999
[7] Gordon A 1988 Solid State Commun. 68885
[8] Gordon A 1989 Solid State Commun. 72223

